Publications

Learning to Drive (L2D) as a Low-Cost Benchmark for Real-World Reinforcement Learning

Published in arXiv, 2020

We present Learning to Drive (L2D), a low-cost benchmark for real-world reinforcement learning (RL). L2D involves a simple and reproducible experimental setup where an RL agent has to learn to drive a Donkey car around three miniature tracks, given only monocular image observations and speed of the car. The agent has to learn to drive from disengagements, which occurs when it drives off the track. We present and open-source our training pipeline, which makes it straightforward to apply any existing RL algorithm to the task of autonomous driving with a Donkey car. We test imitation learning, state-of-the-art model-free, and model-based algorithms on the proposed L2D benchmark. Our results show that existing RL algorithms can learn to drive the car from scratch in less than five minutes of interaction. We demonstrate that RL algorithms can learn from sparse and noisy disengagement to drive even faster than imitation learning and a human operator.

Download here

Hierarchical scene coordinate classification and regression for visual localization

Published in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020

Visual localization is critical to many applications in computer vision and robotics. To address single-image RGB localization, state-of-the-art feature-based methods match local descriptors between a query image and a pre-built 3D model. Recently, deep neural networks have been exploited to regress the mapping between raw pixels and 3D coordinates in the scene, and thus the matching is implicitly performed by the forward pass through the network. However, in a large and ambiguous environment, learning such a regression task directly can be difficult for a single network. In this work, we present a new hierarchical scene coordinate network to predict pixel scene coordinates in a coarse-to-fine manner from a single RGB image. The network consists of a series of output layers, each of them conditioned on the previous ones. The final output layer predicts the 3D coordinates and the others produce progressively finer discrete location labels. The proposed method outperforms the baseline regression-only network and allows us to train compact models which scale robustly to large environments. It sets a new state-of-the-art for single-image RGB localization performance on the 7-Scenes, 12-Scenes, Cambridge Landmarks datasets, and three combined scenes. Moreover, for large-scale outdoor localization on the Aachen Day-Night dataset, we present a hybrid approach which outperforms existing scene coordinate regression methods, and reduces significantly the performance gap wrt explicit feature matching methods.

Download here